Setting Expectations oS
for
Performance Portability ~
between
Companion Accelerator and Manycore
Systems

John M Levesque
Director

Cray’s Supercomputing Center of Excellence
CTO Office

\
Outline CRANY |

e Look at recent research in Europe
e Tuning the implementation of the radiation scheme ACRANEB?2

e Jacob W. Poulsen and Per Berg IT department, DMI
e Most of the slides | will be using were generated by Jacob and Per

e Conclusions

COMPUTE | STORE | ANALYZE

\
Real World Climate Model Issue { _P_N

[\
S \

e ACRANEB?2 is the radiation scheme used in the IFS code \

e Currently the radiation scheme is used intermittently, researchers
would like to use it every time step

e Highly compute intensive unlike other parts of climate modeling which
tend to be memory bandwidth limited
e Radiation scheme ported to KNL and Nvidia
o Then code was optimized for KNL using OpenMP (SPMD)
o Then code was optimized further for P100 using OpenACC

e Performance tests performed on KNL, P100 and Broadwell

Intermezzo: Musings on performance

% Think of a programming language and a parallel programming model
as a short-hand notation for generating specific code for a given target.

% Do not buy the appealing idea that you can construct efficient programs
solely by using the abstractions of programming languages and parallel
programming models.

% Sorry to say but you have to understand how the target architecture
works if performance truly matters to you and you might instead think of
the process of writing code as a process where you try to hint the
compiler etc. in the right direction towards a given target architecture.

% ...and again if performance matters to you:

% Think of a programming language and a parallel programming model
as a short-hand notation for generating specific code for a given target.

Intermezzo: Musings on performance

% Abstractions are very appealing from a computer scientific point of view
but don’t get fooled. Abstractions are never free, 2D arrays can be too
much of an abstraction if performance is key.

1- 2D abstractions too complicated -------

1 do k=2, kmax

2 ki1 = k+off1l

3 k2 = k+off2

4 t(1l:nc,k) = t(1:nc,k) + A(k)*(B(1:nc,k1)-B(1:nc,k2))
5 enddo

“ With dynamic nc the compiler vectorizes nc-loop:
(4): (col. 7) remark: LOOP WAS VECTORIZED

“ With static nc, the compiler vectorizes the k-loop:
(1): (col 7) remark: LOOP WAS VECTORIZED

% Alas, assembler inspection revealed that gather operations were
generated and runtine experiences confirm this.

‘ “as

14

Intermezzo: Musings on performance

% Programming languages and parallel programming models have
several options when it comes to architectural features

(Brent Leback et al, cug2013):
% Hide

“ Virtualize

% Expose

% OpenMP has a good reputation productivitywise — why ?
% OpenMP has a bad reputation performancewise — why ?
“ OpenMP is a highly abstract model so very easy to use and misuse

% MPI has a bad reputation productivitywise — why ?
% MPI has a good reputation performancewise — why ?

% MPI exposes the separate nodes, the distributed memory and all
“network” transfers explicitly so the programmer will have to consider
how to deal with these details while implementing the program

15

Refactoring of legacy code

1. Establish a solid reference (test case and source code) that reproduces the necessary results.

2. Establish build and run env. to ease repetition and reproducibility.
3. Ensure proper threading, i.e. SPMD approach

L)

L)

requires transition to Fortran90 assumed-shape and trimming stack memory usage
contiguous data

4. Strive towards a minimal implementation, including:

L]

Reduce memory overhead

Reduce stack pressure: local tmp 2D/3D vars into 1D/2D vars or even scalars
Largest stack arrays moved to the heap; proper NUMA initialization of heap arrays
Collapsing loops over the outermost index

Symbolic algebraic reduction using pen&paper

Assuring no side effects in local functions (pure in Fortran)

Declare constants as constants (parameter in Fortran), not as variables

Push all branching out of the loops

5. Continued refactoring is to shuffle computations around to maximize parallel exposure
(playing with data structures and loops)

L]

L]

Identify computational patterns with (e.g. reduction and prefix-sum)
and without (SIMD-suitable loops) dependencies

Re-organize heavy loops to constant trip-count

o e

\
=AY |
[\

\
\

25

Tuning for short latency capacity per compute unit

Some P100 specs: 56 SM (streaming multiprocessor) per GPU
32 DP cuda cores per SM

Scheduling unit is a warp [device limit: max 64 warps per SM]
Always 32 threads per warp [i.e. max 2048 active threads per SM]

Thread block [device limit: max 32 blocks per SM]:
Block size is #thread [device limit: max 1024 threads per block]
Default block has 128 threads and 4 warps
Blocks are “tunable” wrt #warps and #threads per block
[device limits: max 1024 threads and max 32 warps per block]

Registers: 256KB register file per SM
[device limits: max 65536 32bit regs per SM,
max 65536 registers per block,
max 255 registers per thread]

So, tuning for short latency capacity on P100 is about keeping #registers per thread low

Measure is occupancy: #active threads in percent of device limit o

Portable vs competitive performance

12
z 10
s 8
=
-
2 6 mP100
e 4 m2S E5-2699v4
g KNL-7210
= 2

0

GPU Xeon & Xeon Phi

Target architecture

Note 1: X and G codes are essentially the same, except for the splits: i)

One must be able to hide the memory latencies
resulting from extra memory transfers required
to bind the smaller parts.

Note 2: X and G codes still has prefix-sum loops:
High scalar/SIMD might hurt performance.

Effect of refactoring

Refactoring is increasingly more important the newer the hardware
- legacy codes might even run slower on more modern HW

Refactoring is even more important for the high throughput architectures

Timings of TRANST in full ACRANEB?2 relative to baseline code on SNB:
mK20x ®WP100 m2S ES5-2699v4 KNL-7210 m®2S E5-2680v1

10000.0%

1000.0% |

100.0% |

10.0% |

1.0% |

0.1% |

Baseline, node Refactored, node Refactored, core

Hardware Counters for both X and G on Broadwell

b
CRAY
)

TRANST3 Running on Broadwell

HW FP Ops Usertime
Total SP Ops
Total-DP-ops
Computational-intensity
MFLOPS(aggregate)

TLButilization
D1cachehit,missratios

D1cacheutilization
D2cachehit,missratio
D1+D2cachehit,miss

D1+D2 cacheutilization

D2toD1bandwidth

KNL Version
- X
2,704.935M
/sec
13.356M/
sec
2,691.579M
/sec

1.1 ops/
cycle
2,704.94M/
sec

3088.61
refs/miss
93.6% hits
15.71refs/
miss

59.6% hits
97.4% hits
38.94 refs/
miss
1,546.057Mi

B/sec

13.7%peak(DP)
20,260,160,826
100,035,301

20,160,125,525

3.81 ops/ref

6.03 avg uses
6.4% misses

1.96 avg hits
40.4% misses
2.6% misses

4.87 avg hits

12,142,593,984 bytes

GPU Version-G
497.003M/sec
6.621M/sec
490.381M/sec
0.25 ops/cycle
497.00M/sec

540.74 refs/miss
95.5% hits

22.38refs/miss
79.8% hits
99.1% hits

110.78 refs/miss

440.315MiB/sec

3.1%peak(DP)
13,489,461,656
179,715,564
13,309,746,092

1.52 ops/ref

1.06 avg uses
4.5% misses

2.80 avg hits
20.2% misses
.1% misses

13.85 avg hits

12,531,398,336 bytes

)

\

Hardware Counters for both X and G on Broadwell

TRANST3 Running on Broadwell
HW FP Ops Usertime

Total SP Ops

Total-DP-ops
Computational-intensity
MFLOPS(aggregate)

TLButilization
D1cachehit,missratios
D1cacheutilization
D2cachehit,missratio
D1+D2cachehit,miss

D1+D2 cacheutilization

D2toD1bandwidth

KNL Version - X
2,704.935M/sec
13.356M/sec
2,691.579M/sec
1.1 ops/cycle
2,704.94M/sec

3088.61 refs/miss
93.6% hits
15.71refs/miss
59.6% hits

97.4% hits

38.94 refs/miss

1,546.057MiB/sec

13.7%peak(DP)
20,260,160,826
100,035,301
20,160,125,525
3.81 ops/ref

6.03 avg uses
6.4% misses
1.96 avg hits
40.4% misses
2.6% misses

4.87 avg hits
12,142,593,984
bytes

GPU Version - G 3.1%peak(DP)

497.003M/sec
6.621M/sec
490.381M/sec
0.25 ops/cycle
497.00M/sec
540.74 refs/
miss

95.5% hits
22.38refs/miss
79.8% hits
99.1% hits

110.78 refs/
miss

13,489,461,656
179,715,564
13,309,746,092
1.52 ops/ref

1.06 avg uses
4.5% misses
2.80 avg hits
20.2% misses
.1% misses

13.85 avg hits
12,531,398,336

440.315MiB/sec bytes

CCRANY
)

)

\
®

\

\

\

Results of X and G code running on Broadwell — 8.2 ='|= AN

Seconds with memory analysis

[\
Samp% | Samp | Imb. | Imb. | MEM LOAD UOPS RETIRED | RESOURCE_STALLS | Group S
| | Samp | Samp% | :HIT LFB:precise=2 | :ALL | Function=[MAX10])(\
I I | | | | Source
I I | | | | Line
100.0% | 94.0 | -— -— 37,600,846 | 18,471,464,610 | Total
I ___
| 70.2% | 66.0 | -— -— 26,400,588 | 13,003,862,681 | USER
|-
|l 70.2% | 66.0 | -— -— 26,400,588 | 13,003,862,681 | acraneb transt3$acraneb3 clone 31615 1501851751 2
31 I I | | | | acraneb2.f90
4] I I I | | | line.130
Samp% | Samp | Imb. | Imb | MEM LOAD UOPS RETIRED | RESOURCE STALLS | Group
| | Samp | Samp$% | :HIT LFB:precise=2 | cALL | Function=[MAX10]
| | | | | | Source
| | | | | | Line
100.0% | 44.0 | -— | -— | 17,600,396 | 40,138,321,643 | Total (3

[l 70.5% | 31.
31 |

| 12,400,279 | 30,022,721,717 | acraneb_transt3Sacraneb3

| | | acraneb3.F90

Results of X and G code running on KNL with =.|= AN
memory analysis «

S \
\
Samp$% | Samp | Imb. | Imb | NO ALLOC CYCLES | MEM UOPS RETIRED | Group
| | Samp | Samp$% | :ALL | :L2 MISS LOADS | Function=[MAX10]
| | | | | :precise=2 | Source
| | | | | | Line \
| 50.0% | 2.0 | -— - 4,050,957,765 | 80,025 | USER)(
I
| 50.0% | 2.0 | -— | -— | 4,050,957,765 | 80,025 | acraneb transt3$acraneb3 clone 3707 1501852873
31 | | | | | | acraneb2.£90
4 | | | | | | | line.130
[
Samp% | Samp | Imb. | Imb. | NO ALLOC CYCLES | MEM UOPS RETIRED | Group
| | Samp | Samp% | :ALL | :L2 MISS LOADS | Function=[MAX10]
| | | | | :precise=2 | Source
| | | | | | Line (3
100.0% | 22.0 | -— -- | 95,250,152,816 | 880,198 | Total
| ___
| 90.9% | 20.0 | - -- | 90,890,511,782 | 800,181 | USER
l[l-----------— -
[l 86.4% | 19.0 | - | -— | 90,799,881,468 | 760,155 | acraneb transt3Sacraneb3

3 | | | | | | acraneb3.F90

100.0% | 1,271.608331 |

Code Optimized for KNL ='='A‘Yf?

-- | Total

|

| 100.0% | 1,271.602597 |
| 100.0% | 1,271.602595 |
3 99.9% | 1,270.601680 |
4 99.9% | 1,270.463249 |
5 99.9% | 1,270.463240 |
6 99.9% | 1,270.463238 |
7 99.9% | 1,270.176018 |
8 99.2% | 1,260.805241 |

1.0 | foo_

1.0 | main_

2.0 | radia_dwarf$radia_m_

1.0 | acraneb2$acraneb2 m_

2.0| acraneb_transt3$acraneb3_

--| acraneb_transt3$acraneb3 .LOOP.1.1i.238 (160,000)
- | acraneb_transt3$acraneb3 .LOOP.3.1i.305 (40)

- | acraneb_transt3$acraneb3_.LOOP.6.1i.485 (81)

AN 25.4% | 323.354494 | 518,400,000.0 | zcdel0$acraneb3
AN 22.7% | 288.227424 | 518,400,000.0 | ztdel1$acraneb3 _
NI 15.0% | 190.522204 | 518,400,000.0 | zcdelta1$acraneb3
AN 14.4% | 182.970033 | 518,400,000.0 | ztdelta1$acraneb3_
AN 11.1% | 141.669216 | 518,400,000.0 | zcdelta2$acraneb3
I 10.5% | 134.061872 | 518,400,000.0 | ztdelta2$acraneb3_

\

\

Table 1: Function Calltree View .

\
Timed | Time | Calls | Calltree Code 0ptimi29d for GPU ==A‘Yj |

100.0% | 1,177.513999 | -- | Total

‘ ___

| 100.0% | 1,177.508949 | 1.0 | foo S \
| 100.0% | 1,177.508947 | 1.0 | main_ \
3 99.8% | 1,174.984080 | 2.0 | radia dwarf$radia m

4 99.8% | 1,174.845679 | 1.0 | acraneb2$acraneb2 m

5 99.8% | 1,174.845669 | 2.0 | acraneb transt3$acraneb3

6 99.8% | 1,174.845665 | -— acraneb transt3Sacraneb3 .LOOP.0001.1i.210 (2)
R R e \
TEIILI 27.1% 319.289605 | -- | acraneb_ transt3Sacraneb3 .LOOP.0014.11.469 (80,000
gl 27.1% | 319.157763 | -- | acraneb transt3$acraneb3 .LOOP.0016.1i.502 (40)
9111111 26.4% | 311.138577 | - acraneb transt3$acraneb3 .LOOP.0019.1i.567 (81)
1011111 26.4% | 311.138577 | 518,400,000.0 | zcdelOSacraneb3

TIIIITT 24.8% | 291.704217 | -- | acraneb transt3Sacraneb3 .LOOP.0026.11i.657 (80,000)
8111111 24.8% | 291.496028 | -— acraneb transt3$acraneb3 .LOOP.0028.1i.701 (40)
Ol 24.0% | 283.149544 | -— | acraneb transt3$acraneb3 .LOOP.0031.1i.803 (81)
TR e

10000111 13.5% | 159.425912 | 518,400,000.0 | ztdeltalSacraneb3

1000001111 10.5% | 123.723632 | 518,400,000.0 | ztdelta2$acraneb3

FEEEEEEEn

T 24.0% | 282.573841 | -- | acraneb_ transt3Sacraneb3 .LOOP.0032.1i.832 (80,000)
8111111 24.0% | 282.452776 | - acraneb transt3$acraneb3 .LOOP.0034.11i.865 (40)
9111111 23.4% | 274.949679 | -— acraneb transt3Sacraneb3 .LOOP.0037.1i.934 (81)
1001111 23.4% | 274.949679 | 518,400,000.0 | ztdell$acraneb3

T 13.5% 158.979422 | -- | acraneb_transt3Sacraneb3 .LOOP.0002.11.218 (80,000)
8l 13.5% | 158.788738 | -- | acraneb transt3Sacraneb3 .LOOP.0004.1i.254 (40)
9111111 12.9% | 151.482292 | - acraneb transt3$acraneb3 .LOOP.0007.1i.323 (81)
1001111 12.9% | 151.482292 | 518,400,000.0 | zcdeltalSacraneb3

TIIIIT 10.4% | 122.140792 | -- | acraneb transt3Sacraneb3 .LOOP.0008.1i.347 (80,000)
8111111 10.4% | 121.957475 | -— acraneb transt3$acraneb3 .LOOP.0010.1i.380 (40)
9111111 9.8% | 114.865167 | -— acraneb transt3$acraneb3 .LOOP.0013.1i.445 (81)
1001111 9.8% | 114.865167 | 518,400,000.0 | zcdelta2$acraneb3

\

Further tuning — 2

Ci1i
Ci2
ca2.1
c2.2
c3 Do >
Crest
T1.1
T1.2
T2.1
T2.2
T3
Trest

Sketch of latest GPU target code: nproma & 12-way split, GN code

C3 chunk as an example:

I$acc parallel
Jlon-loop, stride nproma:
Jlev-loop:
i=1,nproma:
Preparation: 8 (5 RO, 3 WO)
Jlevl-loop:
Jlev2-loop:
i=1,nproma:
Prefix-sum: 12 (3+2+1 RO, 6 WO)
Jlev2-loop:
i=1,nproma:
Fat loop: 8+1 (6+1 RO, 1 WR)

34

Further tuning — 2

GN code:

scalar/SIMD ratio decreases, so does occupancy: 25 - 43.75%
Result is that T2S decreases by 1.7x: T2S=232s
Part regs/thread theoretical

Ci1
C1.2
Cc2.1
C2.2
C3
Crest
T1.1
T1.2
T2.1
T2.2
T3
Trest

96
72
94
72
118
94
96
72
94
72
112
80

occupancy

(%]
31.25
43.75
31.25
43.75
25
31.25
31.25
43.75
31.25
43.75
25
37.50

TS[s] A

Loop Table for NPROMA =32 run

Table 2:

Loop
Incl
Time$%

[
wl
NN U0 0o O O~ J0W W OO RFNDNDDND D J-J 0 o

o® o oo

oo oo

o® d° o° o° o

o° d° o d° o o° o° o°

oo oo

o o° oo

oo oo

Loop Incl

Time

.202939
.109848
.047825
.755567
.716739
.373284
.312884
.024567
.984875
.320211
.165708
.259467
.104327
.604348
.472911
. 629111
.494902
.404953
.301616
.361857
.216170
.050951
.948361
.034804
.902847

i

N

wl £~ £
OV O PO OOF OO0 O ORFRFORFRFOB OO OO OO o

NS

Time
(Loop
Adj.)

.000008
.003810
.302535
.038828
.147064
.003828
.308230
.039692
.315884
.014168
.060907
.014077
.013176
.131438
.302278
.134209
.806381
.013350
.019964
.145688
.037572
.013106
.003706
.131957
. 839249

Inclusive and Exclusive Time in Loops

Loop Hit

1,250
50,000
4,050,000
2

1,250
50,000
4,050,000
2

5,000

2

5,000
200,000
16,200,000
200,000
16,200,000
2

5,000
200,000
16,200,000
2

5,000
200,000
16,200,000

Loop
Trips
Avg

128.
625.

40.

81.
128.
2,500.
40.
2,500.
40.
81.
32.
81.
32.
2,500.
40.
81.
32.
2,500.
40.
81.
327

O O OO OO0 O OO OO O OO OO O OO O OO OO o

Loop
Trips
Min

128
625
40
81
128

2,500

40

2,500

40
81
32
81
32

2,500

40
81
32

2,500

40
81
32

(from -hprofile generate)

Loop
Trips
Max

128
625
40
81
128

2,500

40

2,500

40
81
32
81
32

2,500

40
81
32

2,500

40
81
32

Function=/.LOOP[.]

acraneb transt3$acraneb3

acraneb transt3$acraneb3

acraneb transt3$acraneb3 .
acraneb transt3$acraneb3 .
acraneb:transtB$acraneb3:.
acraneb transt3$acraneb3 .
acraneb:transt3$acraneb3:.
acraneb transt3$acraneb3 .
acraneb transt3$acraneb3 .

acraneb transt3$acraneb3

acraneb transt3$acraneb3 .
acraneb:transt3$acraneb3:.
acraneb transt3$acraneb3 .
acraneb transt3$acraneb3 .
acraneb:transtB$acraneb3:.
acraneb transt3$acraneb3 .

acraneb transt3$acraneb3

acraneb transt3$acraneb3 .
acraneb transt3$acraneb3 .

.LOOP
acraneb transt3$acraneb3 .
acraneb:transt3$acraneb3:.
acraneb transt3$acraneb3 .
acraneb:transt3$acraneb3:.
acraneb transt3$acraneb3 .
acraneb transt3$acraneb3 .
.LOOP
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
.LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
.LOOP.
LOOP.
LOOP.

LOOP
LOOP
LOOP
LOOP
LOOP
LOOP

0001.
0050.
0053.
0060.
0061.
0121.
0124.
0131.
0132.
0073.
0076.
0002.
0005.
0083.
0084.
0012.
0013.
0097.
0100.
0107.
0108.
0026.
0029.
0036.
0037,

1i

1i

1i

.179
1i.
1i.
1i.
1i.
1i.
1i.
.1330
1i.
1i.
1i.
1i.
1i.
1i.
1i.
.278
1i.
1i.
1i.
1i.
1i.
1i.
1i.
1i.
I

607
633
713
719
1223
1249

1336
807
832
188
213
896
902

283
1024
1047
1102
1107
402
424
481
486

Tuning for short latency capacity per compute unit

is the GN code performina on f R

... Actually, performance drops A LOT!!!

@ T2S more than 1 min on BDW and 5 min on KNL vs 2.3 secs on P100

Time to solution [s], log

1000

100

=
o

GNM code

G code

X code

EP100
W 2S E5-2699v4
KNL-7210

37

Conclusions

The author’s of the aforementioned paper and | believe that
performance is more important than productivity

For this radiation scheme

o Thtexbest performance on the GPU does not perform well on KNL and state-of-the-
art Xeon

e The best performance on KNL performs well on Xeon and okay on the GPU.
Register spilling to Memory on the GPU hurts performance and
rewriting to minimize spills generates code that significantly abuses
cache on the Xeon and KNL systems

Perftools is indicating that the principal difference in the two versions
of the code is the cache utilization

Memory analysis tool shows that the L2 cache misses on KNL for the
G code is ten times what it is for the X code

Memory analysis tool shows that the stalls attributed to memory
access are twice as big for the G code on Broadwell than the X code

O
Danish Meteorological Institute GEi) ®
Ministry of Energy, Utilities and Climate . @

y
)
—

T
DMI Report 17-22

Tuning the implementation of the radiation scheme
ACRANEB2

Jacob Weismann Poulsen and Per Berg

http://www.dmi.dk/fileadmin/user upload/Rapporter/TR/2017/SR17-22.pdf

